DEMOSTRACIONES CON ENCANTO

DEMOSTRACIONES CON ENCANTO

UN VIAJE POR LAS MATEMÁTICAS ELEGANTES

ALSINA I CATALÀ, CLAUDI / NELSEN , ROGER B.

21,00 €
IVA incluido
Editorial:
SM EDICIONES
Fecha de edición:
2021-03-01
Materia
Pedagogia
ISBN:
978-84-1318-779-2
Páginas:
292
Encuadernación:
Rústica
Colección:
ESTÍMULOS MATEMÁTICOS

Disponibilidad:

  • AsunciónSin stock CONSULTE "pedidos especiales"
  • RepúblicaSin stock CONSULTE "pedidos especiales"
  • Santa CatalinaSin stock CONSULTE "pedidos especiales"
  • FeriaSin stock CONSULTE "pedidos especiales"
  • NerviónSin stock CONSULTE "pedidos especiales"
21,00 €
IVA incluido
Añadir a favoritos

Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos.................................................................  37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6. Los vigilantes de la galería de arte......................................................................... 784.7. Triangulaciones de polígonos convexos................................................................ 804.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 834.9. Desafíos.................................................................. 85Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 875.1. El teorema de Pitágoras................................................................. 875.2. Parentescos pitagóricos.............................................................. 885.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 915.4. La generalización de Pappus del teorema de Pitágoras................................................................. 925.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 935.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 955.7. El triángulo órtico...................................................................... 965.8. La desigualdad de Erdo?s-Mordell................................................................... 975.9. El teorema de Steiner-Lehmus................................................................... 995.10. Las medianas de un triángulo............................................................... 1005.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 1025.12. Desafíos................................................................ 103Capítulo 6. El embrujo del triángulo equilátero.............................................................. 1056.1. Teoremas de estilo pitagórico.............................................................. 1056.2. El punto de Fermat de un triángulo............................................................... 1086.3. El teorema de Viviani.................................................................. 1096.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 1106.5. El teorema de Napoleón.............................................................. 1126.6. El milagro de Morley.................................................................. 1136.7. El teorema de Van Schooten............................................................... 1156.8. El triángulo equilátero y la razón áurea..................................................................... 1166.9. Desafíos......................................................... 117Capítulo 7. El rincón de los cuadriláteros......................................................... 1197.1. Puntos medios en cuadriláteros......................................................... 1197. 2. Cuadriláteros cíclicos................................................................. 1217.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 1237.4. Cuadriláteros tangenciales y bicéntricos............................................................ 1267.5. Los teoremas de Anne y Newton................................................................. 1277.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 1297.7. Desafíos........................................................ 130Capítulo 8. Cuadrados por todas partes.................................................................... 1338.1. Teoremas con un cuadrado............................................................... 1338.2. Teoremas con dos cuadrados.............................................................. 1358.3. Teoremas con tres cuadrados.............................................................. 1408.4. Con cuatro y más cuadrados.............................................................. 1428.5. Cuadrados y matemáticas recreativas............................................................ 1448.6. Desafíos......................................................... 146Capítulo 9. Curvas a la vista .............................................................................  149 Cuadraturas de lúnulas ............................................................................. 1499.2. La asombrosa espiral de Arquímedes ............................................................................ 1559.3. La cuadratriz de Hipias................................................................. 1579.4. El cuchillo de zapatero y la bodega de sal....................................................................... 1589.5. Las cónicas según Quetelet y Dandelin ............................................................................ 1609.6. Triángulos de Arquímedes.........................................................1619.7. Hélices............................................................... 1649.8. Desafíos.............................................................. 165Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 16910.1. Embaldosados y teselaciones del plano................................................................... 17010.2. Embaldosados con triángulos y cuadriláteros....................................................... 17410.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 17710.4. La rana saltarina............................................................... 17910.5. Los siete frisos.................................................................... 18110.6. Demostraciones coloridas ....................................................................................... 18410.7. El dodecaedro y los caminos hamiltonianos.......................................................... 19210.8. Desafíos..................................................................................................................... 194Capítulo 11. Geometría en tres dimensiones...................................................... 19711.1. El teorema de Pitágoras en tres dimensiones....................................................... 19811.2. Particiones del espacio con planos........................................................................ 19911.3. Triángulos correspondientes en tres rectas.......................................................... 20111.4. Un cono que triseca ángulos ................................................................................. 20111.5. La intersección de tres superficies esféricas......................................................... 20211.6. La cuarta circunferencia......................................................................................... 20411.7. El área del triángulo esférico................................................................................. 20511.8. La fórmula de Euler para poliedros....................................................................... 20611.9. Caras y vértices de poliedros convexos................................................................. 20711.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 20911.11. Euler y Descartes à la Pólya................................................................................... 21011.12. Cuadriculando cuadrados y cubiculando cubos................................................... 21111.13. Desafíos................................................................................................................... 213Capítulo 12. El patio de recreo de los polígonos................................................ 21512.1. Conjuntos numerables y no numerables.............................................................. 21512.2. El teorema de Cantor-Schröder-Bernstein............................................................ 21712.3. La desigualdad de Cauchy-Schwarz...................................................................... 21812.4. La desigualdad entre la media aritmética y la media geométrica....................... 22012.5. Dos perlas del origami............................................................................................ 22112.6. ¿Cómo dibujar una línea recta?.............................................................................. 22312.7. Algunas joyas de las ecuaciones funcionales....................................................... 22512.8. Desigualdades funcionales.................................................................................... 23012.9. La serie de Euler para p2/6..................................................................................... 23312.10. El producto de Wallis.............................................................................................. 23512.11. La aproximación de Stirling para n!...................................................................... 23612.12. Desafíos................................................................................................................... 238Soluciones a los desafíos........................................................................................... 241Capítulo 1........................................................................................................................... 241Capítulo 2........................................................................................................................... 243Capítulo 3........................................................................................................................... 247Capítulo 4........................................................................................................................... 249Capítulo 5........................................................................................................................... 251Capítulo 6........................................................................................................................... 255Capítulo 7........................................................................................................................... 258Capítulo 8........................................................................................................................... 261Capítulo 9........................................................................................................................... 262Capítulo 10......................................................................................................................... 265Capítulo 11.......................................................................................................................... 269Capítulo 12......................................................................................................................... 270Referencias bibliográficas......................................................................................... 273Índice por palabras...................................................................................................... 283Sobre los autores........................................................................................................... 289

Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas.  A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector —se plantean alrededor de ciento treinta—, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros. 

Artículos relacionados

  • EL BOTIQUIN DE LUCIA, MI PEDIATRA
    LUCIA GALAN
    Descubre qué lleva un botiquín de primeros auxilios y cómo actuar ante pequeños accidentes con Lucía, mi pediatra, la doctora favorita de las familias.¡Hola, pequeños exploradores de la salud! ¿Sabéis qué es un botiquín de primeros auxilios? Es como un cofre del tesoro, pero en lugar de monedas de oro y joyas brillantes, guarda cosas superimportantes para ayudarnos cuando ocurr...

    17,95 €

  • ESTO ES CIENCIA & COCINA
    WUTH, HEINZ
    ¿Cuándo se debe añadir sal a las legumbres ¿Y a la carne ¿El limón cocina el pescado ¿Y como evitar efectivamente la oxidación del aguacate o palta Descubre la ciencia detrás de la cocina y descubre los consejos y secretos para cocinar como un profesional con Esto es ciencia y cocina. Con este libro, Heinz Wuth utiliza ejemplos cotidianos, explicaciones sencillas e ilustracione...

    41,90 €

  • EL JARDÍN Y LA JUNGLA
    PLENEL, EDWY
    "Europa es un jardín. Pero la mayor parte del resto del mundo continúa siendo una selva, y la selva podría invadir el jardín...". Éstas fueron la polémicas palabras de Josep Borrell, alto representante de la Unión Europea para Asuntos Exteriores, unos meses después de la invasión rusa de Ucrania, también un año antes de la guerra de Israel contra Gaza. Y, a partir de esa frase...

    21,00 €

  • DESCUBRIENDO LOS VOLCANES TABLERO MAGNETICO
    DAVID ,PATRICK
    La caja incluye un libro documental de 64 páginas para conocerlo todo sobre los volcanes, as¡ como más de 35 imanes para colocar en un gran tablero magnético.e brilla en la oscuridad!ocurrió que los penaltis servir¡an para amansar a unos jugadores insumisos y descontrolados. Futbolistas y aficionados acogieron con espanto la ocurrencia de McCrum, pero el tiempo acabó dándole la...

    19,95 €

  • CÓMO SE APRENDE
    KIRSCHNER, PAUL A. / HENDRICK, CARL
    Cómo se aprende presenta a 32 gigantes de la investigación educativa y sus descubrimientos sobre cómo aprendemos realmente y sobre todo lo que necesitamos saber para hacerlo de forma eficaz, eficiente y amena. Sus aportaciones, que Kirschner y Hendrick desgranan magistralmente en estas páginas, han dejado una huella profunda en cómo enseñamos hoy en día, inspirando a docentes e...

    27,50 €

  • EL HOMBRE MÁS RICO DE BABILONIA
    CLASON, GEORGE S.
    Cómo alcanzar el éxito y solucionar sus problemas financieros En este libro encontrará los principios fundamentales que necesita para triunfar en el terreno financiero y que le permitirán engrosar su bolsillo, aumentar su cuenta bancaria y asegurarse el éxito económico que todos anhelamos, aprendiendo a conservarlo y a hacerlo fructificar. Se trata de la guía perfecta tanto par...

    6,95 €